If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+40X-200=0
a = 1; b = 40; c = -200;
Δ = b2-4ac
Δ = 402-4·1·(-200)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-20\sqrt{6}}{2*1}=\frac{-40-20\sqrt{6}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+20\sqrt{6}}{2*1}=\frac{-40+20\sqrt{6}}{2} $
| -1(1x+5)=-14 | | 30x=70 | | T+2×3t=4 | | 19—4c=17 | | 6”x”+3=31 | | 4+10d=5d-1 | | 6-7(a+1)=-3(2-a)1/2 | | .25(1x-12)=4 | | 4+20d=5d-1 | | -4(-2y+4)=6y+2 | | 2(x-1)+2x=-6-2 | | 18+3.8x=7.36-1.9x | | 7=-1+x/3 | | 15x=5x+3-2x | | 5(16)-4+9y+5=180 | | 14+2=-4(3x-4) | | -3(d-7=6) | | 76+9y+5=180 | | x/3=4x-6 | | 4x+12+4x=20 | | a/2.5=11/10 | | 5x+2/5-2x-8/3=-3 | | 2(4x+5)=-20+4 | | 13x+5x=90÷2 | | 4(x+1)-5x=16 | | -8(v+3)+4+7=6v+6 | | 28x-35=7-11x | | 5x+6x-4=29 | | 8p+-20p+2p+11p=19 | | -14.50+p=53 | | x+3x+6x-2=180 | | Y=-6x-11(0,) |